31 research outputs found

    Improvements to the TCVD method to segment hand-drawn sketches

    Full text link
    Tangent and Corner Vertices Detection (TCVD) is a method to detect corner vertices and tangent points in sketches using parametric cubic curves approximation, which is capable to detect corners with a high accuracy and a very low false positive rate, and also to detect tangent points far above other methods in literature. In this article, we present several improvements to TCVD method in order to establish mathematical conditions to detect corners and make the obtaining of curves independent from the scale, what increases the success ratio in transitions between lines and curves. The new conditions for obtaining corners use the radius as the inverse of the curvature, and the second derivative of the curvature. For the detection of curves, a new descriptor is presented, avoiding the parameters dependent of scale used in TCVD method. In order to obtain the performance of the implemented improvements, several tests have been carried out using a dataset which contains sketches more complex than those used for validation of TCVD algorithm (sketches with more curves and tangent points and sketches of different sizes). For corners detection, the accuracy obtained was pretty similar to that obtained with the previous TCVD, however, for curves and tangent points detection the accuracy increases significantly.Spanish Ministry of Science and Education and the FEDER Funds, through HYMAS project (Ref. DPI2010-19457) and INIA project VIS-DACSA (Ref. RTA2012-00062-C04-03) partially supported this work.Albert Gil, FE.; Aleixos Borrás, MN. (2017). Improvements to the TCVD method to segment hand-drawn sketches. Pattern Recognition. 63:416-426. https://doi.org/10.1016/j.patcog.2016.10.024S4164266

    A new paradigm based on agents applied to free-hand sketch recognition

    Get PDF
    Important advances in natural calligraphic interfaces for CAD (Computer Aided Design) applications are being achieved, enabling the development of CAS (Computer Aided Sketching) devices that allow facing up to the conceptual design phase of a product. Recognizers play an important role in this field, allowing the interpretation of the user’s intention, but they still present some important lacks. This paper proposes a new recognition paradigm using an agent-based architecture that does not depend on the drawing sequence and takes context information into account to help decisions. Another improvement is the absence of operation modes, that is, no button is needed to distinguish geometry from symbols or gestures, and also “interspersing” and “overtracing” are accomplishedThe Spanish Ministry of Science and Education and the FEDER Funds, through the CUESKETCH project (Ref. DPI2007-66755-C02-01), partially supported this work.Fernández Pacheco, D.; Albert Gil, FE.; Aleixos Borrás, MN.; Conesa Pastor, J. (2012). A new paradigm based on agents applied to free-hand sketch recognition. Expert Systems with Applications. 39(8):7181-7195. https://doi.org/10.1016/j.eswa.2012.01.063S7181719539

    A new method to analyse mosaics based on Symmetry Group theory applied to Islamic Geometric Patterns

    Get PDF
    [EN] This article presents a new method for analysing mosaics based on the mathematical principles of Symmetry Groups. This method has been developed to get the understanding present in patterns by extracting the objects that form them, their lattice, and the Wallpaper Group. The main novelty of this method resides in the creation of a higher level of knowledge based on objects, which makes it possible to classify the objects, to extract their main features (Point Group, principal axes, etc.), and the relationships between them. In order to validate the method, several tests were carried out on a set of Islamic Geometric Patterns from different sources, for which the Wallpaper Group has been successfully obtained in 85% of the cases. This method can be applied to any kind of pattern that presents a Wallpaper Group. Possible applications of this computational method include pattern classification, cataloguing of ceramic coatings, creating databases of decorative patterns, creating pattern designs, pattern comparison between different cultures, tile cataloguing, and so on.The authors wish to thank the Patronato de la Alhambra y Generalife (Granada, Spain) and the Patronato del Real Alcázar de Sevilla (Seville, Spain) for their valuable collaboration in this research work.Albert Gil, FE.; Gomis Martí, JM.; Blasco, J.; Valiente González, JM.; Aleixos Borrás, MN. (2015). A new method to analyse mosaics based on Symmetry Group theory applied to Islamic Geometric Patterns. Computer Vision and Image Understanding. 130:54-70. doi:10.1016/j.cviu.2014.09.002S547013

    New method to find corner and tangent vertices in sketches using parametric cubic curves approximation

    Full text link
    Some recent approaches have been presented as simple and highly accurate corner finders in the sketches including curves, which is useful to support natural human-computer interaction, but these in most cases do not consider tangent vertices (smooth points between two geometric entities, present in engineering models), what implies an important drawback in the field of design. In this article we present a robust approach based on the approximation to parametric cubic curves of the stroke for further radius function calculation in order to detect corner and tangent vertices. We have called our approach Tangent and Corner Vertices Detection (TCVD), and it works in the following way. First, corner vertices are obtained as minimum radius peaks in the discrete radius function, where radius is obtained from differences. Second, approximated piecewise parametric curves on the stroke are obtained and the analytic radius function is calculated. Then, curves are obtained from stretches of the stroke that have a small radius. Finally, the tangent vertices are found between straight lines and curves or between curves, where no corner vertices are previously located. The radius function to obtain curves is calculated from approximated piecewise curves, which is much more noise free than discrete radius calculation. Several tests have been carried out to compare our approach to that of the current best benchmarked, and the obtained results show that our approach achieves a significant accuracy even better finding corner vertices, and moreover, tangent vertices are detected with an Accuracy near to 92% and a False Positive Rate near to 2%.Spanish Ministry of Science and Education and the FEDER Funds, through CUESKETCH (Ref. DPI2007-66755-C02-01) and HYMAS projects (Ref. DPI2010-19457) partially supported this work.Albert Gil, FE.; García Fernández-Pacheco, D.; Aleixos Borrás, MN. (2013). New method to find corner and tangent vertices in sketches using parametric cubic curves approximation. Pattern Recognition. 46(5):1433-1448. https://doi.org/10.1016/j.patcog.2012.11.006S1433144846

    Analysis of the detachment of citrus fruits by vibration using artificial vision

    Get PDF
    The vibratory behaviour of citrus fruits is studied using slow-motion cameras in order to gain a better understanding of the parameters involved in fruit detachment when mechanical harvesting is done using shakers. Single citrus fruits with a small portion of stem were vibrated using strokes from 60 mm to 180 mm and frequencies from 3 Hz to 18 Hz. The movement was recorded at 300 fps and the main parameters considered for fruit detachment were determined through the analysis of the video sequences. Image-processing algorithms created for this purpose were applied to the automated estimation of the centroid of the fruit, the angle of the stem pistil axis, and the position of some selected points in the fruit in each frame of the video sequences to obtain dynamic parameters such as the position, speed and acceleration of the fruit during the movement until it is detached. The signals obtained from the image processing were filtered, providing results in accordance with the calibration systems. In general, results suggest that the inertial forces transmitted to the fruit were lower than the tensile forces required to detach the fruit by pulling it in the stem pistil direction. The largest peaks were observed using long strokes that required fewer cycles for detachment. On the other hand, short strokes combined with high frequencies needed more cycles, and thus a fatigue phenomenon was present. Short strokes and low frequencies were unable to detach some fruit. (C) 2014 IAgrE. Published by Elsevier Ltd. All rights reserved.This work was founded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) through the projects RTA2009-00118-C02-01 and RTA2009-00118-C02-02, and co-founded by European FEDER founds.Torregrosa Mira, A.; Albert Gil, FE.; Aleixos Borrás, MN.; Ortiz Sánchez, MC.; Blasco Ivars, J. (2014). Analysis of the detachment of citrus fruits by vibration using artificial vision. Biosystems Engineering. 119:1-12. https://doi.org/10.1016/j.biosystemseng.2013.12.010S11211

    Product data quality and collaborative engineering

    No full text
    corecore